A Performance Evaluation on Channel Assignment based on Deep **Reinforcement Learning in Heterogeneous Wireless Network with Unlicensed Bands**

Bayarmaa Ragchaa and Kazuhiko Kinoshita

Tokushima University

1. Introduction

Extending cellular network to unlicensed spectrum Growth of mobile data traffic □ Scarcity of licenced band

□ Inefficient usage of unlicensed band

Limitation of traditional methods for RRAM \Box LBT (LAA R.13, 3GPP) □ CSAT/CA (LTE-U R.10-12, LTE-U forum) □ **ABS** (LTE R.10 3GPP)

2. Assumed environment

Small areas: covered by one or more APs

Coverage area: same size for AP and BS, hexagonal

Two types of users:

- Wi-Fi only users: use the Wi-Fi network only
- LTE/Wi-Fi combined users: use LTE and Wi-Fi

□ LAA LBT: Cat 4, Modeled by Markov chain, 5GHz unlicensed

3. Proposed Method

DRL: channel assignment problem \rightarrow MDP, (S, A, p, R)

- □ **State space:** # of users and their location ID, channel state
- **\Box** Action space: $A_t \in A = \{0, 1, 2, 3\}$
- $\Box \text{ Transition probability: } p(S_{t+1}, R_t | S_t, A_t) = P_r \{S_t = S_{t+1}, R_t = R_{t+1} | S_{t-1} = S_t, A_{t-1} = A_t\}$
- **□** Reward function: $R_t(S_t, A_t)$

Interaction process between an agent and the environment

- \Box Time steps: 107
- Epsilon greedy algorithm:
- $A_{t} \in A = \{0, 1, 2, 3\}$ \Box Transfer A, from DQN (client) to
- environment (server)
- $\Box \text{ Calculate } \mathbf{R}(S_t, A_t)$
- $\Box \text{ Transfer } R_t, S_{t+1}$
- $\Box \text{ Store } e_t = (S_t, A_t, R_t, S_{t+1}) \text{ in } D$
- □ Calculate *Q* value
- □ Loss function: Huber
- Optimizer: Adam

4. Performance Evaluation

Simulation model			
Minimum area:	288	# of channels for AP:	4
Placeable area:	136	# of channels for BS:	3
Coverage area:	54	User arrival rate:	λ (Poisson arrival process)
# of BS:	7	Arrival ratio Wi-Fi and LTE+Wi-Fi users:	1:1
# of AP:	100	Communication time:	300sec (exponential distribution)

Performance of the obtained DDQN model

Kyoto, Japan 2022.10.31